Exercises from Kaplansky's book.

Sec 1.5: 2, 4
Sec 1.3: 4, 7, 10
Other (mandatory) exercises.

1. Determine which of the following E are equivalence relations and, for those which are, describe all equivalence classes. Prove your answers.
(a) On $\mathbb{R}: x E y: \Leftrightarrow|x-y|<1$.
(b) On $\mathbb{R}: x E y: \Leftrightarrow$ there is no integer in the interval $(\min (x, y), \max (x, y)]$.
(c) On $\mathbb{R}: x E y: \Leftrightarrow$ either $x=y$ or one of x, y is positive.
(d) On $\mathbb{R}: x E y: \Leftrightarrow$ either $x=y$ or both of x, y are positive.
(e) On $\mathbb{R}^{2}:\left(x_{0}, x_{1}\right) E\left(y_{0}, y_{1}\right): \Leftrightarrow x_{0}=y_{0}$.
(f) On $\mathscr{P}(X)$, for some set $X: A E B: \Leftrightarrow$ there is a bijection $A \rightarrow B$.
2. Prove that every finite partially ordered set has a maximal and a minimal elements. Hint: Arguing by contradiction, build an infinite subset.
3. Let (X, \leq) be a partially ordered set in which every subset has a top (= maximum) and a bottom ($=$ minimum) elements.
(a) Prove that \leq is a total order.
(b) Let x_{0} be the bottom element of X, let x_{1} be the bottom element of $X-\left\{x_{0}\right\}$, let x_{2} be the bottom element of $X-\left\{x_{0}, x_{1}\right\}, \ldots$ let x_{n+1} be the bottom element of $X-\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$, and so on ... Prove that this process must terminate at some finite stage n.
(c) Conclude the following theorem.

Theorem. If in a partially ordered set every subset has a top and a bottom elements, then X is finite.
4. Let (X, \leq) be a partially ordered set in which the largest length of a subchain ${ }^{1}$ is n. Let \mathcal{C} be the collection of all subchains of X that have n elements (the chains in \mathcal{C} may overlap and this is ok); in particular, each $C \in \mathcal{C}$ is a chain, whence has a top element, denoted by max C.
(a) Prove that the set $M:=\{\max C: C \in \mathcal{C}\}$ is an antichain.
(b) Prove that the largest length of a subchain of $X \backslash M$ is $n-1$.
(c) Using the previous two parts and induction, prove the following theorem.

Theorem. If, in a partially ordered set (X, \leq), the largest length of a subchain is n, then X is a union of n antichains and n is the least integer with this property.

[^0]
[^0]: ${ }^{1}$ In a partially ordered set (X, \leq), subchain is just a subset $A \subseteq X$ such that (A, \leq) is a chain.

