Math 432: Set Theory and Topology

Due date: Feb 2 (Thu)

Exercises from Kaplansky's book.

Sec 1.5: 2, 4

Sec 1.3: 4, 7, 10

Other (mandatory) exercises.

- 1. Determine which of the following E are equivalence relations and, for those which are, describe all equivalence classes. Prove your answers.
 - (a) On \mathbb{R} : $xEy :\Leftrightarrow |x-y| < 1$.
 - (b) On \mathbb{R} : $xEy :\Leftrightarrow$ there is no integer in the interval $(\min(x, y), \max(x, y)]$.
 - (c) On \mathbb{R} : $xEy \iff$ either x = y or one of x, y is positive.
 - (d) On \mathbb{R} : $xEy :\Leftrightarrow$ either x = y or both of x, y are positive.
 - (e) On \mathbb{R}^2 : $(x_0, x_1)E(y_0, y_1) :\Leftrightarrow x_0 = y_0$.
 - (f) On $\mathscr{P}(X)$, for some set X: $A E B \Leftrightarrow$ there is a bijection $A \to B$.
- Prove that every finite partially ordered set has a maximal and a minimal elements. HINT: Arguing by contradiction, build an infinite subset.
- **3.** Let (X, \leq) be a partially ordered set in which **every subset** has a top (= maximum) and a bottom (= minimum) elements.
 - (a) Prove that \leq is a total order.
 - (b) Let x_0 be the bottom element of X, let x_1 be the bottom element of $X \{x_0\}$, let x_2 be the bottom element of $X \{x_0, x_1\}, \ldots$ let x_{n+1} be the bottom element of $X \{x_0, x_1, \ldots, x_n\}$, and so on \ldots Prove that this process must terminate at some finite stage n.
 - (c) Conclude the following theorem.

Theorem. If in a partially ordered set every subset has a top and a bottom elements, then X is finite.

- 4. Let (X, \leq) be a partially ordered set in which the largest length of a subchain¹ is n. Let \mathcal{C} be the collection of all subchains of X that have n elements (the chains in \mathcal{C} may overlap and this is ok); in particular, each $C \in \mathcal{C}$ is a chain, whence has a top element, denoted by max C.
 - (a) Prove that the set $M := \{\max C : C \in \mathcal{C}\}$ is an antichain.
 - (b) Prove that the largest length of a subchain of $X \setminus M$ is n 1.
 - (c) Using the previous two parts and induction, prove the following theorem. **Theorem.** If, in a partially ordered set (X, \leq) , the largest length of a subchain is n, then X is a union of n antichains and n is the least integer with this property.

¹In a partially ordered set (X, \leq) , subchain is just a subset $A \subseteq X$ such that (A, \leq) is a chain.